

Evidence-Based Interventions for Infants and Children with Atypical Muscle Tone: A Scientific Review

1

David Chapman, PT, Ph.D.

September, 2022

ddchapman@stcate.edu

812-345-5122

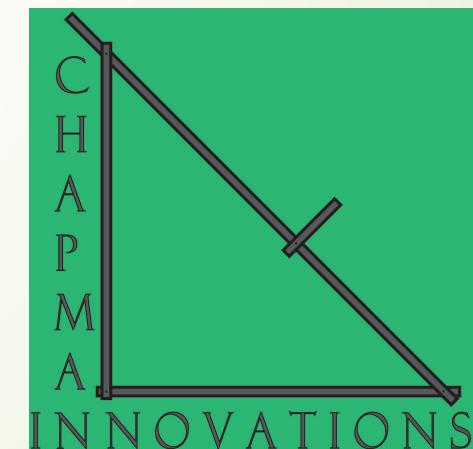
“ MORE IS MISSED BY NOT LOOKING THAN BY NOT KNOWING”
THOMAS MCCRAE


Personal Background

2

Professional Background

3


My Connections with Mississippi

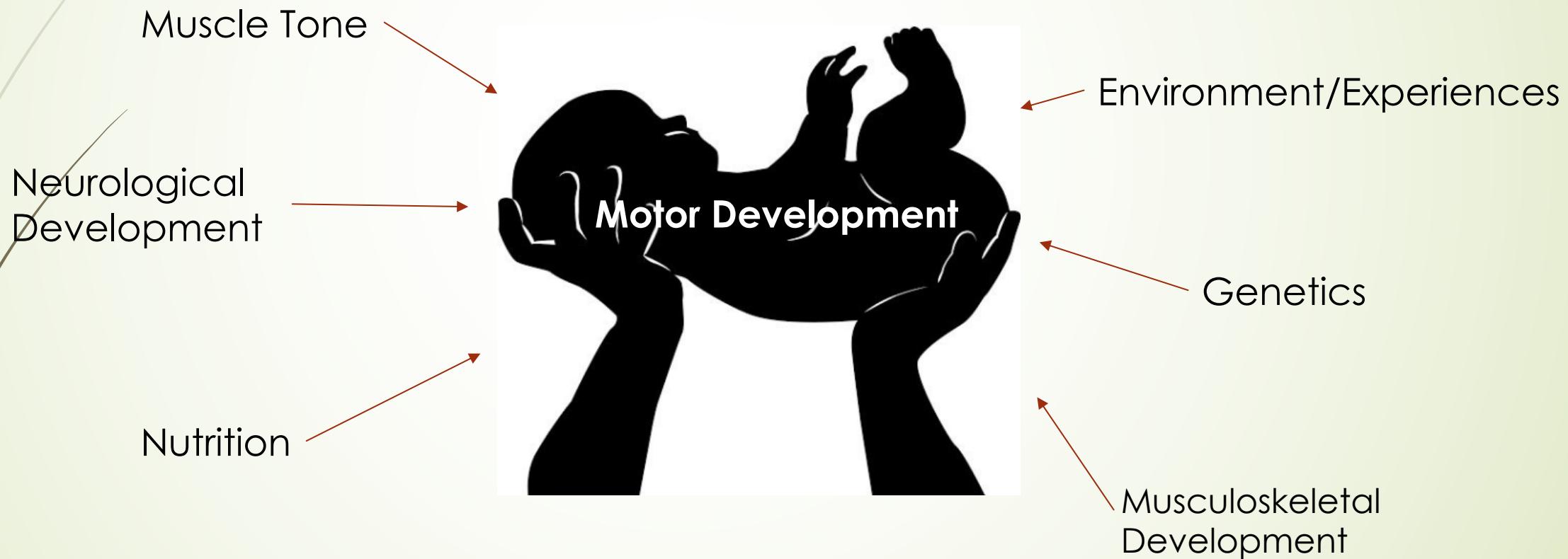
Acknowledgements & Disclosures

- ▶ Section 1: Interventions for Infants & Children with Low Tone
Mallory Applegate, DPT; Bradley Basco, DPT; Marie Morrier, DPT;
Savannah Stoos, DPT
- ▶ Section 2: Interventions for Infants & Children with High Tone
Natalia Bissing, DPT; Conner Rued, DPT; Madeline
Scheunemann, DPT; Kristen Schultz, DPT; Kathleen (Kiki)
Dickinson, MPT, PTAql.

Disclosures: Chapman Innovations, LLC
Medbridge courses on Spina Bifida

Session Objectives:

- ▶ **Overall** – To provide a scientific review of the relative effectiveness of physical therapy interventions that are designed to promote gross motor function/development for infants and children with atypical muscle tone.*
- ▶ **Section 1: Low Tone**
To review the relative effectiveness of physical therapy interventions that are designed to promote gross motor function for infants and children with low muscle tone
- ▶ **Section 2: High Tone/CP**
To review the relative effectiveness of physical therapy interventions that are designed to improve gross motor function for infants and children with spastic cerebral palsy.
- ▶ * We excluded aquatic therapy secondary to the relatively robust literature that currently exists


Types of Literature Reviews – A Reminder ...

7

- ▶ **Scientific Review** = a critical review of the current published evidenced on a topic that enables inclusion of a variety of types of research
- ▶ **Systematic Review** = a review of the evidence on a specific question that uses systematic & explicit methods to identify, select, & critically appraise primary research, and to analyze results from the studies that are included
- ▶ **Meta-analysis** = an analysis that combines the statistical results of multiple scientific studies

Motor Development – A systems approach...

- ▶ Definition = ...changes in motor skills over time (Clark & Whitall, 1989)

Introduction

Figure 1: Muscle tone

Hypotonia

Normal Muscle Tone

Hypertonia

Hypertonia

Velocity Independent
(Rigidity)

Velocity Dependent
(Spasticity)

A. Methods for Infants & Children with Low Tone

*This set of 55 articles included duplicates & review articles

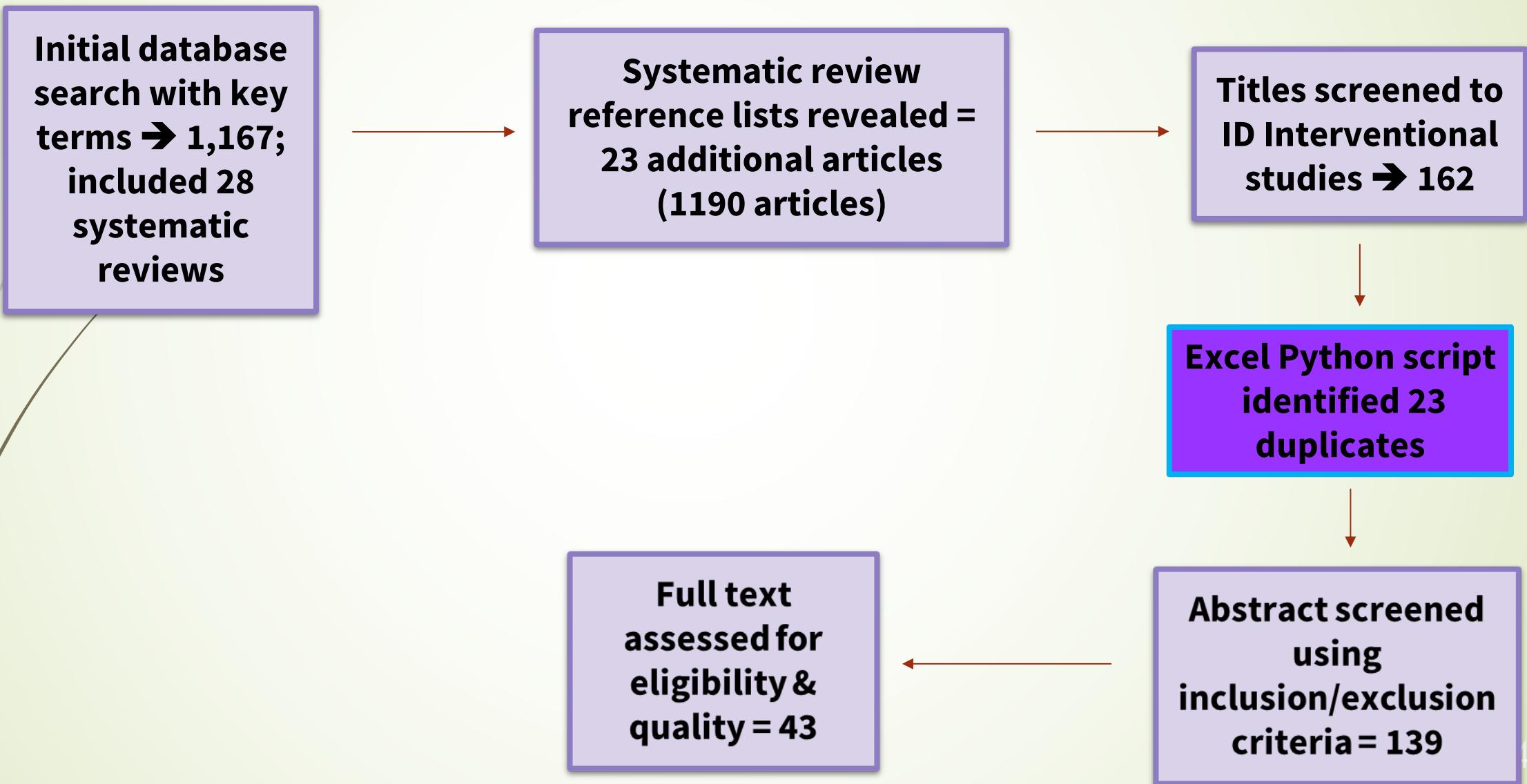
Data Bases & Search Terms – Low Tone Review

Data Bases: CINAHL; Medline; PubMed; Google Scholar

Search Terms: Motor Development, Hypotonia, Infants, Children, Pediatrics, Low Muscle Tone, Weakness, Hypotonia, Down syndrome, Spina Bifida, Physical Therapy, Physiotherapy, Therapy, Interventions, Treatment, Best Practice, Exercise

Outcome Measures: Not Applicable

Inclusion Criteria – Low Tone Review


- ✓ Participants were diagnosed with idiopathic hypotonia or a disease/disorder associated with the presence of hypotonicity as a common trait, e.g. Down syndrome, Spina Bifida, CP, Prader-Willi Syndrome, or Rett Syndrome
- ✓ Participant group mean age \leq 13 years of age at the beginning of the study
- ✓ Specific PT interventions for infants & children with low tone that were designed to improve or facilitate gross motor development
- ✓ Original research studies published in 2000 or later

Exclusion Criteria – Low Tone Review

- ✓ Interventional Studies published before 2000
- ✓ Interventional techniques that may require an advanced certification or specialization, e.g. hippotherapy, dry needling, acupuncture
- ✓ Interventions that may be inappropriate for a PT to implement based on the MN state practice act
- ✓ Systematic & Cochrane Reviews

B. Methods for Infants & Children with High Tone

Data Bases & Search Terms – High Tone Review

Data Bases: CINAHL; Medline; PubMed; Cochrane Library

Search Terms: Pediatrics, Children, Physical Therapy, Rehabilitation, Gross Motor Function, Spasticity, Cerebral Palsy,

Outcome Measures: Gross Motor Function Measure (GMFM); Pediatric Evaluation Disability Inventory; Gait Speed

Inclusion Criteria – High Tone Review

- ✓ Clinical diagnosis of spasticity secondary to cerebral palsy
- ✓ Participant mean age \leq 13 years of age at the beginning of the data collection process
- ✓ Studies including specific physical therapy interventions that were designed to improve or facilitate gross motor function in infants/children with spastic cerebral palsy
- ✓ Original research studies

Exclusion Criteria – High Tone Review

- ✓ Studies published before the year 2000
- ✓ Interventional techniques which may require advanced certification or specialization (e.g., hippotherapy, dry needling, or acupuncture)
- ✓ Interventions that may be inappropriate for a physical therapist to implement based on the MN state practice act
- ✓ Systematic & Cochrane reviews

Quality Assessment Process for Low & High Tone Reviews

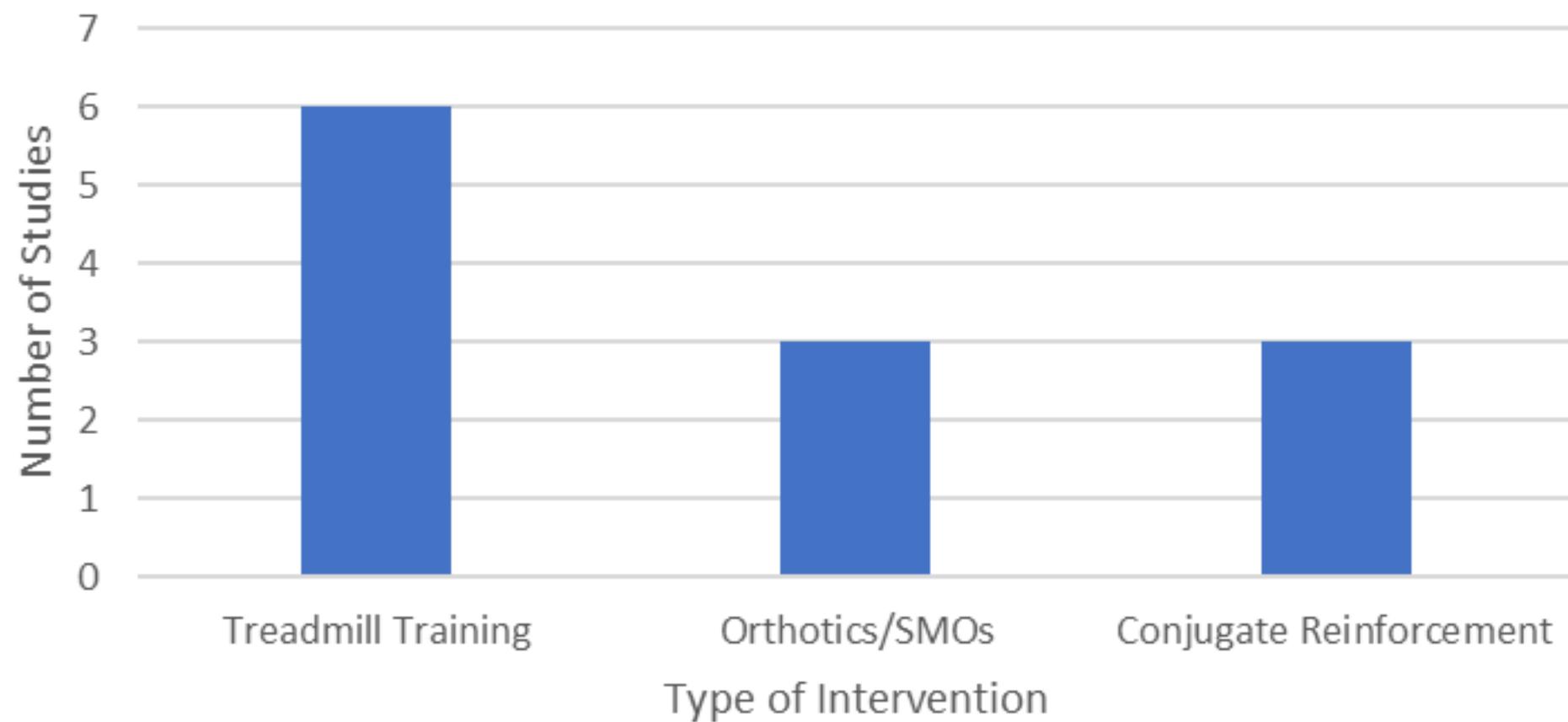
1. Four student researchers were split randomly into two pairs.
2. The final articles were divided between 2 pairs of students.
3. Each researcher individually evaluated their assigned group of articles using the appropriate quality assessment tool.
4. Quality scores were determined for each study.
5. Any between-rater discrepancies were averaged.

Quality Assessment Tool: PEDro Scale

Applied to:	Randomized Clinical Trials
Total Points:	10
Quality Scores:	Moderate quality = 6-7/10 High quality $\geq 8/10$
Exemplar Criteria:	Baseline similarity, randomization, allocation concealment, blinding, potential bias, statistical analysis and comparison

Quality Assessment Tool: Newcastle-Ottawa Scale

Applied to:	Case-Control Studies
Total Points:	10
Quality Scores:	Moderate quality $\geq 6/10$
Exemplar Criteria:	Certainty of diagnosis, control selection, representativeness, randomization, statistical analysis, ascertainment of outcome(s)


Quality Assessment Tool: National Heart, Lung, Blood, Institute (NHLBI)

Applied to:	Case Series Studies
Total Points:	9
Quality Scores:	Moderate quality $\geq 5/9$
Exemplar Criteria:	Study design/consecutive cases, validity of outcome measures, potential bias, description of intervention, study power, adequate follow-up period (≥ 4 weeks)

RESULTS for Infants & Children with Low Tone

Figure 2. Most Frequent Intreventions for Infants & Children with Low Muscle Tone

Intervention Parameters: Treadmill Training for Infants & Children with Low Tone

Treadmill Belt Speed = .15m/s to .3m/s; Mean = .2m/s

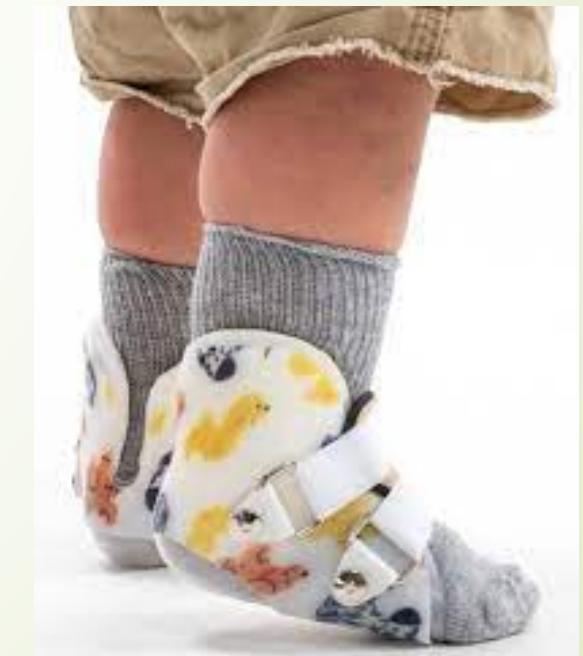
Frequency = 5 days/week

Duration = 8 to 12min/session

Intensity can be individualized = based on an infant's step rate
→ Belt speed can be increased from 10 steps/min to >30 steps/min & Ankle weights can be added based on a % of calf mass, e.g. 15%, 30% of calf mass & the infant's step rate

Intervention Results: Treadmill Training for Infants & Children with Low Tone

https://youtu.be/03_ZFLPRIEE


- ✓ Infants with low tone who received TM training →
- ✓ Walked earlier in life
- ✓ Showed improved gait parameters, i.e. longer step length, improved joint kinematics, cadence, decreased double support phase,
- ✓ Improved gait speed
- ✓ Higher intensity, i.e increased belt speed, ankle weights → to greater improvements in stepping & gait patterns

Quality Ratings: Treadmill Interventions for Infants & Children with Low Tone

- ✓ All 6 studies TM studies supported improved stepping patterns &/or gait parameters with infants with low tone who received TM training walking earlier in life
- ✓ Collectively, these studies were rated to be of moderate quality.
- ✓ Quality Scores ranged from 7.5-9 on either the Newcastle-Ottawa Scale or the NHLBI scale and 6-7/10 on the PEDro Scale

Intervention Parameters: Orthotics/SMOs for Infants & Children with Low Tone

- ▶ Orthotic/SMO interventions ranged from 3 weeks to 6 months
- ▶ Cascade DAFO Hotdogs with medial posting, Custom hard orthotics with medial posting, & flexible SMOs
- ▶ Daily wear when the child was active with shoes
- ▶ <https://youtu.be/Wt0EPV6U4oA>

Intervention Results: Orthotics/SMOs for Infants & Children with Low Tone

- ✓ Older infants (18 mon) & young children (5 yr old) with low tone showed improved:
 - Improved arch height
 - Improved ability to rise to stand, standing, lowering, cruising, stepping forward per Peabody Test of Motor Development
 - Improved walking, running, jumping immediately & after 7 weeks of wear & balance per BOT balance subtest after 7 weeks of wear

Quality Ratings: Orthotic/SMO Interventions for Infants & Children with Low Tone

- ✓ All 3 orthotic/SMO studies supported improved biomechanics, gross motor skill development, walking ability & gait biomechanics for older infants/children and functional mobility for younger infants
- ✓ Collectively, these studies were rated to be of moderate quality.
- ✓ Quality Scores ranged from 7-7.5-9 on either the Newcastle-Ottawa Scale or the NHLBI scale and 6/10 on the PEDro Scale

Intervention Parameters: Conjugate Reinforcement for Infants with Low Tone

- ▶ **Frequency:** 1x/month
- ▶ **Intensity:** Average 1 to 1.5 minute trials
- ▶ **Duration:** 1-4 months
- ▶ **Infant Ages:** 4-7 months at entry into the study
- ▶ **Paradigm:** Baseline, Acquisition, Extinction

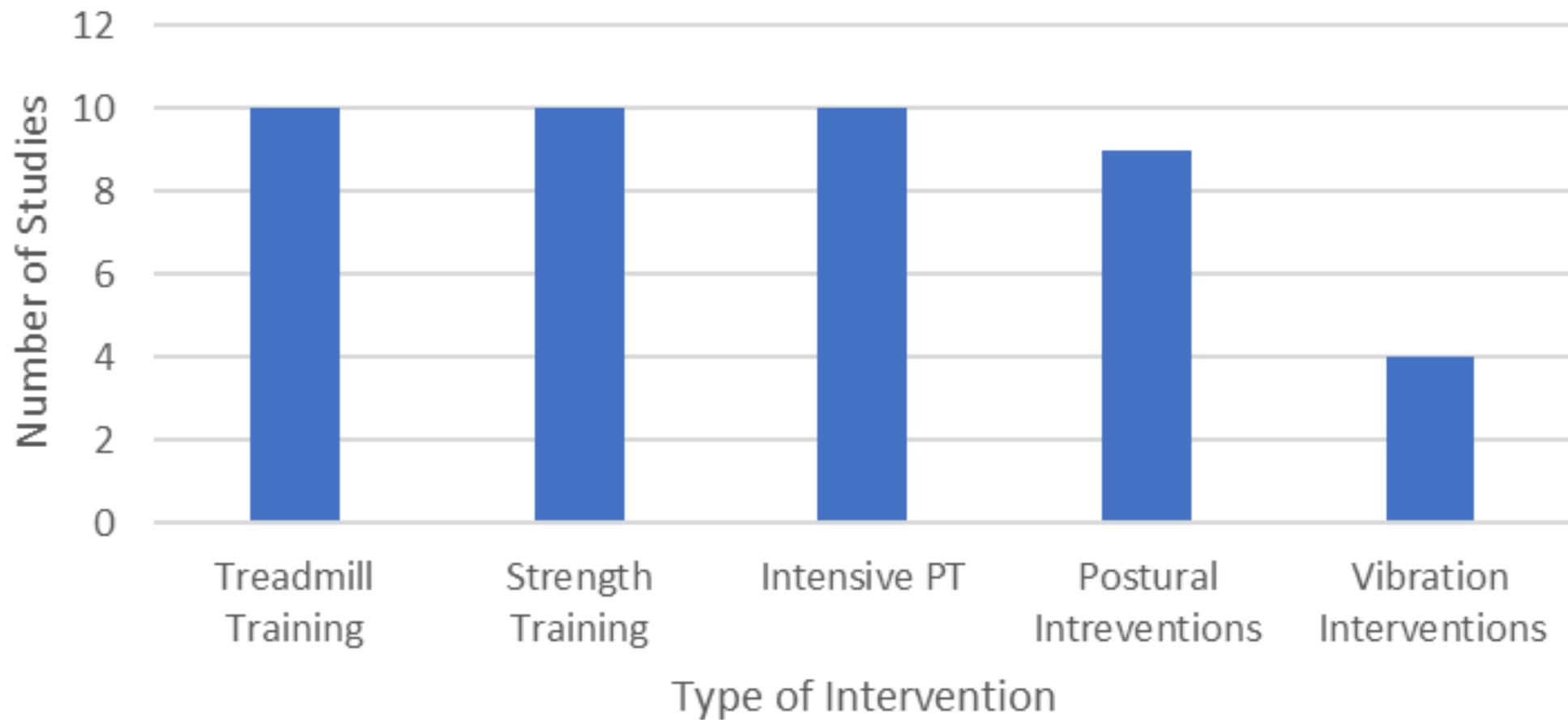
Intervention Results: Conjugate Reinforcement for Infants with Low Tone

Pre-walking infants with low tone generate more leg movements & kicks:

- ✓ When 1 leg is tethered to the mobile
- ✓ Immediately after they have had 1 leg tethered to the mobile, e.g. extinction condition

Quality Ratings: Conjugate Reinforcement Interventions for Infants with Low Tone

- ✓ All 3 studies demonstrate that pre-walking infants with low tone are able to generate more leg movements &/or kicks when they have 1 leg tethered to an overhead mobile & immediately following having 1 leg tethered to an overhead mobile
- ✓ All 3 papers were rated to be of moderate quality
- ✓ Quality ratings = 7/9 for all 3 papers


Stretch Break!!

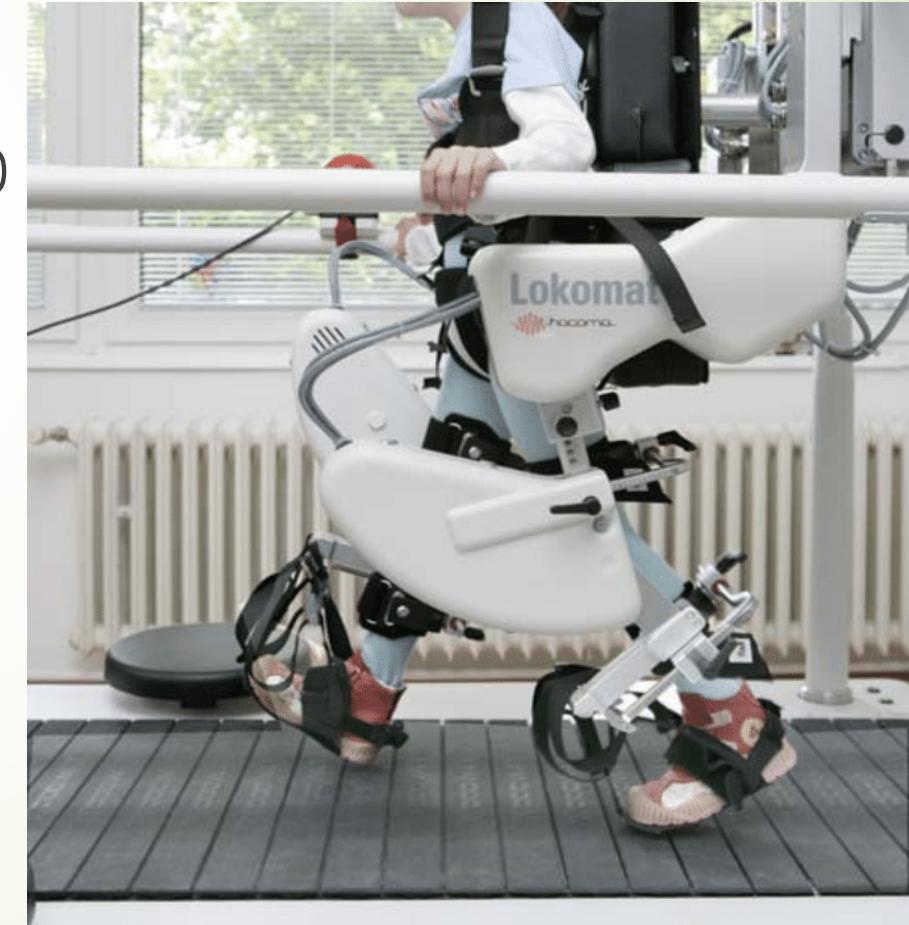

RESULTS for Infants & Children with High Tone

Figure 3. Most Frequent Interventions for Infants & Children with High MuscleTone

Intervention Parameters: Treadmill Training for Children with High Muscle Tone

- ▶ **Treadmill Belt Speed** = individualized based on child's gait quality, e.g. single leg knee control or % of max over-ground walking speed, e.g. .25 m/sec
- ▶ **Frequency** = 2 - 6 sessions/week for 20 - 30 minute sessions
- ▶ **Duration** = 3 – 12 weeks
- ▶ **Variables** = Traditional; Robot-enhanced repetitive treadmill therapy (ROBERT); Virtual reality; Backwards walking; Eyes open vs. eyes closed

Intervention Results: Treadmill Training for Children with High Tone

Children with spastic CP who received treadmill training:

- ✓ Improved gait quality, gait speed, endurance, & motor function per GMFM & PEDI scores
- ✓ Improved functional balance & motor control (joint proprioception)
- ✓ Attained walking skills earlier in life
- ✓ Required less support for walking

Quality Ratings: Treadmill Training for Children with High Tone

- ✓ All 10 studies supported improved gross motor function&/or improved gait patterns for children with high tone
- ✓ 9/10 articles were rated to be of moderate quality or higher
- ✓ PEDro Scale scores = 5.5-8.5/10 & NHLBI scores = 6.5-7/9

Intervention Parameters: Strength Training Interventions for Children with High Tone

- ▶ **Frequency** = 3-4 sessions/week
- ▶ **Intensity** = 30-60 minutes/session
- ▶ **Duration** = 5-24 weeks
- ▶ **Variables** = Multi-joint movements; High velocity movements; Progressive load; Lower extremity focus, e.g. DFs; Functional movements, e.g. sit to stands, step-ups and stair climbing; Virtual cycling,

Results: Strength Training Interventions for Children with High Tone

- ✓ Children with spastic CP who received strength training:

Improved aerobic capacity and gait speed

Decreased muscle tone

Enhanced muscle strength

Improved gross motor function

Quality of Life

- ✓ Of those studies that did not demonstrate improvements in gross motor function, children with spastic CP exhibited isolated strength gains

Quality Ratings: Strength Training for Children with High Tone

- ✓ 9/10 studies supported improved gross motor function for children with high tone
- ✓ All 9 studies were rated to be of moderate quality or higher
- ✓ PEDro Scale Scores = 5.5-8/10 & NHLBI scores = 8.5-9/9
- ✓ NOTE: The study that did not support improved gross motor function was also rated to be of moderate quality

Intervention Parameters: Intensive PT for Children with High Tone

- ▶ **Frequency** = 4-6 sessions/week
- ▶ **Intensity** = 45 minutes to 6 hours/day
- ▶ **Duration** = 2-24 weeks
- ▶ **Variables** = Body weight supported treadmill training; Goal-directed activity; Therasuit; Play activities

Results: Intensive PT Interventions for Children with High Tone

- ✓ Children with spastic CP who received intensive training:
 - ▶ Improved overground gait speed
 - ▶ Increased ambulation distance
 - ▶ Improved basic motor abilities & self-care

Example of TheraSuit

- ✓ Of those studies that did not demonstrate improvements in gross motor function, children with spastic CP exhibited initial improvements in gross motor function that were not statistically significant

Quality Ratings: Intensive PT for Children with High Tone

- ✓ 6/10 supported using intensive PT interventions to improve gross motor function in children with high tone
- ✓ 9/10 studies were rated to be of moderate or higher quality
- ✓ PEDro Scale scores = 6-9/10; NHLBI scores = 7.5-8.5/9; & Newcastle score = 2.5/10

Parameters: Postural Interventions for Children with High Tone

- ▶ **Frequency** = 2-6 sessions/week
- ▶ **Intensity** = 30-75 minutes per session
- ▶ **Duration** = 4-12 weeks
- ▶ **Variables** = Kinesiotaping; Neuromuscular electrical stimulation (NMES); Neurodevelopmental treatment (NDT); Sensory/proprioceptive tasks

Results: Postural Interventions for Children with High Tone

- ✓ Children with spastic CP who received postural training:
 - ➡ Improved sitting posture & postural control
 - ➡ Enhanced postural alignment
 - ➡ Improved gross motor function

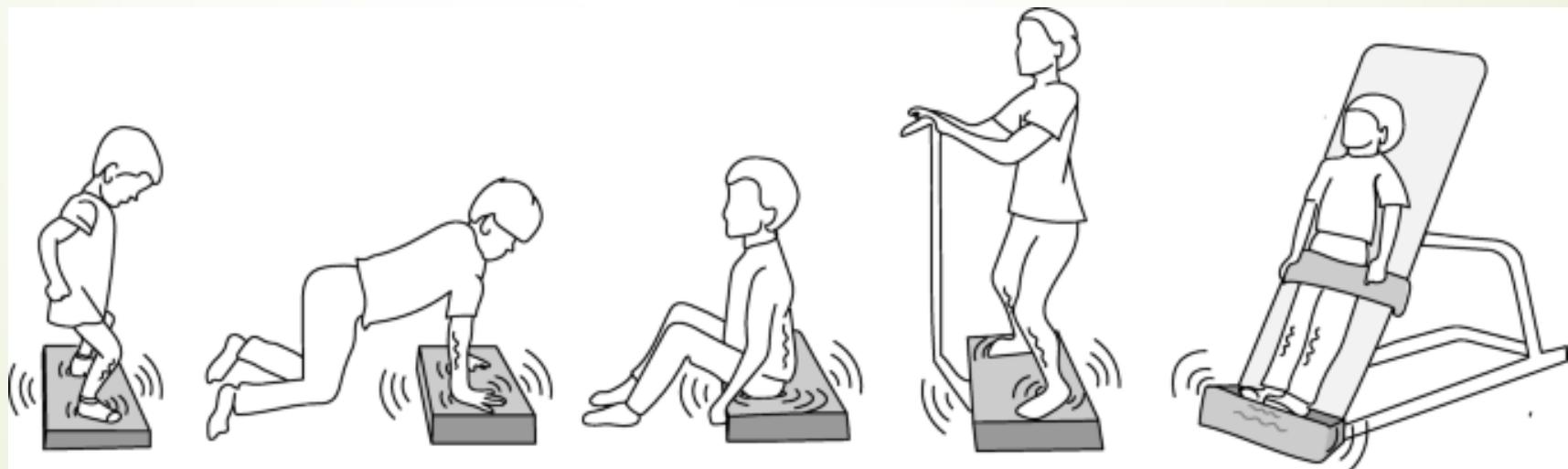
- ✓ Of those studies that did not demonstrate improvements in gross motor function, children with spastic CP exhibited improved head & visuomotor control


Quality Ratings: Postural Interventions for Children with High Tone

- ✓ 7/9 studies supported using improved gross motor function for children with high tone
- ✓ PEDro Scale Scores = 4-8/10 & NHBLI score = 6/9
- ✓ NOTE: The 2 studies that did not support using postural interventions to improve gross motor function for children with high tone were of poor quality

Parameters of Vibration Interventions for Children with High Tone

- ▶ **Frequency** = 2-9 sessions/week
- ▶ **Intensity** = 10-15 minutes per session with vibration of 12Hz to 18Hz
- ▶ **Duration** = 12-24 weeks
- ▶ **Variables** = Whole body vibration; Side alternating whole body vibration; Tilt table


Results: Vibration Interventions for Children with High Tone

- ✓ Children with spastic CP who received vibration training in 2/4 studies showed:
 - ➡ Improved gross motor function, gait, & balance
 - ➡ Decreased spasticity
- ✓ In 2/4 articles vibration was found to be safe & feasible but children with high tone did not show Improved gross motor function

Quality Ratings: Vibration Interventions for Children with High Tone

- ✓ 2/4 articles supported using vibration to improve gross motor function, gait, balance in children with high tone
- ✓ PEDro Scale Scores for 4/4 articles = 6-8/10

DISCUSSION

Interventions for Children with Atypical Muscle Tone are Marked by:

- **A wide variety of:**

- ✓ Interventions
- ✓ Intervention parameters, e.g. duration, intensity
- ✓ Outcome measures, e.g. GMFM, QoL, isolated strength
- ✓ Quality ratings → mostly moderate quality studies

- ✓ Suggestion: Be an 'informed consumer' → Evidence Guided Practice

Intervention Recommendations

PT Interventions for Infants & Children with Low Muscle Tone

Treadmill Training with individualized intensity levels based on infant's step rate to facilitate walking & gait quality

Orthotics & SMOs to improve arch height, select aspects of gross motor function, & improve walking, running & jumping

Conjugate Reinforcement to increase how often pre-walking infants with low tone move their legs & kick

PT Interventions for Infants & Children with High Muscle Tone

Treadmill training to improve gait, endurance, functional balance, & motor control

Strength training to improve aerobic capacity, gait speed, & gross motor function and decrease muscle tone

Intensive PT to improve gait speed, ambulation distance (endurance), basic motor skills (mixed support)

Postural Interventions to improve sitting posture, postural control & alignment, & improve gross motor function

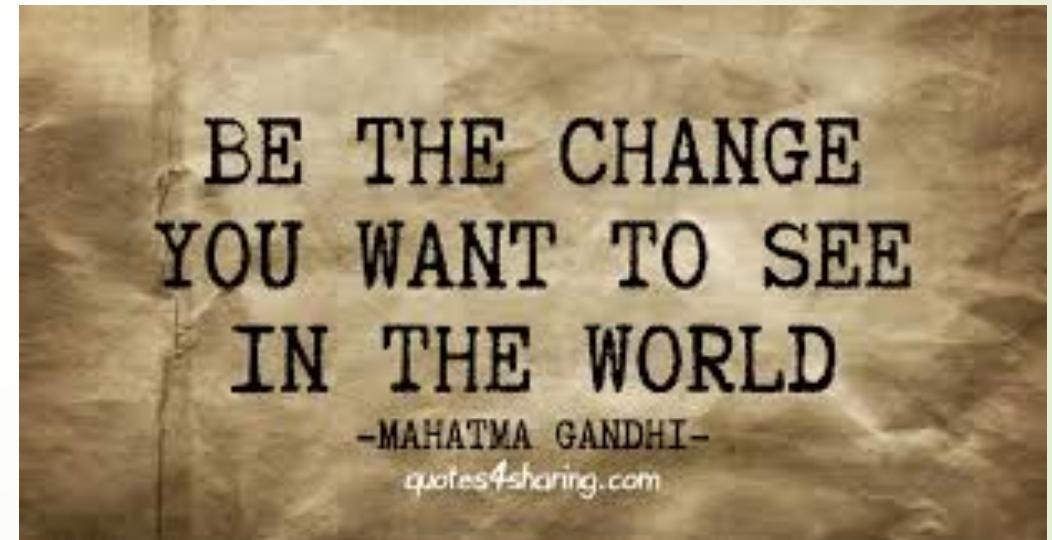
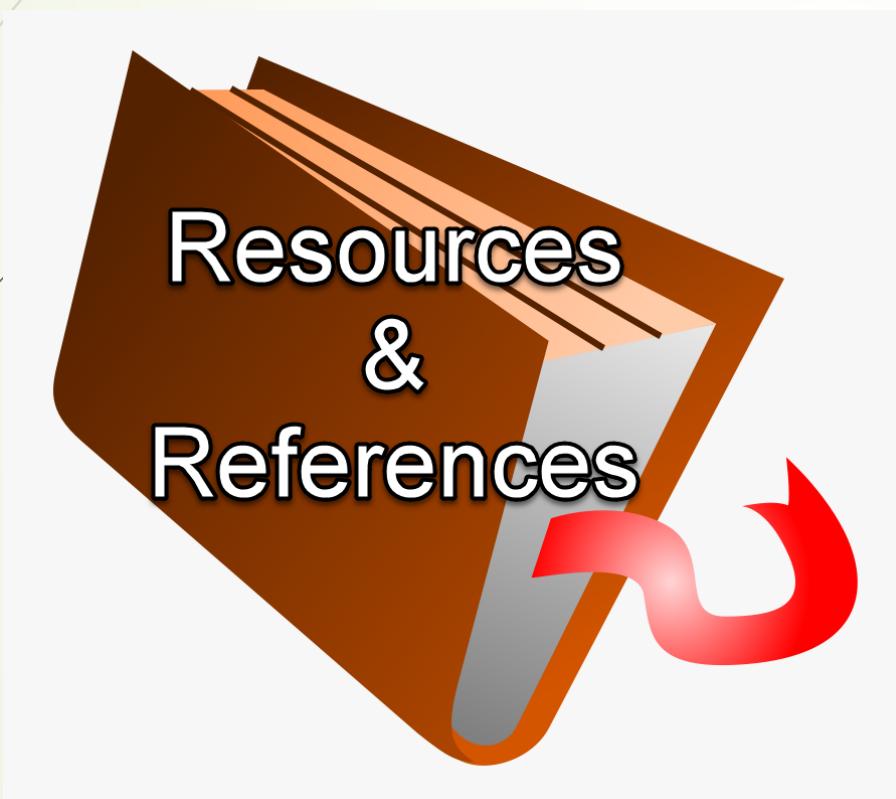
Vibration Interventions may improve gross motor function

Study Limitations

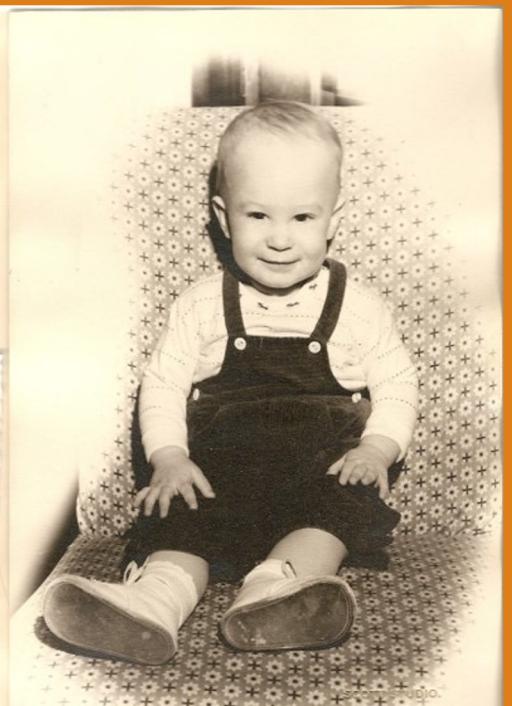
Populations: Hypotonia & Spastic CP

Mean group age: ≤ 13 at entry into study

Publications: Original articles published in English since 2000



Outcome(s) of Interest = Motor Development &/or Gross Motor Function

Interventions: Within the scope of the MN PT Practice Act &/or excluded advanced certification or specialization


Future Research Directions

- ▶ Better designed postural intervention studies
- ▶ Longer longitudinal Studies
- ▶ More consistent intensive intervention dosage parameters
- ▶ Additional diagnoses that result in high tone
- ▶ Increase diversity, e.g. race, ethnicity of participants
- ▶ Ask parents/caregivers what interventions & outcomes are most important to them & their child
- ▶ Larger sample sizes

References are available upon request
via ddchapman@stkate.edu

Questions?

References

1. Scientific literature reviews. https://www.dcu.ie/sites/default/files/students_learning/scientific_lit_review_workshop_uq.pdf. Accessed 8.1.22.
2. Types of literature reviews. <https://guides.library.ucla.edu/c.php?g=224129&p=1485355>. Accessed 8.1.22
3. Clark J, Whitall J. Motor development: The lessons of history. *Quest*. 1989; pp. 183-202.
4. Maher C, Sherrington C, Herbert R, Moseley A, Elkins M. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. *Phys Ther*. 2003;83(8):713-721. doi:10.1093/ptj/83.8.713
5. PEDro scale - PEDro. PEDro. <https://pedro.org.au/english/resources/pedro-scale/>. Published 2021. Accessed January 19, 2021.
6. Pope D, Bruce N. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-Analysis. Presentation presented at the: University of Liverpool, UK.
7. Study Quality Assessment Tools | NHLBI, NIH. Nhlbi.nih.gov. <https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools>. Published 2021. Accessed January 19, 2021.
8. Lee DK, Sansom JK. Early Treadmill Practice in Infants Born With Myelomeningocele: A Pilot Study. *Pediatr Phys Ther*. 2019 Jan;31(1):68-75. doi: 10.1097/PEP.0000000000000554. PMID: 30507852.
9. Angulo-Barroso RM, Tiernan C, Chen LC, Valentin-Gudiol M, Ulrich D. Treadmill training in moderate risk preterm infants promotes stepping quality--results of a small randomised controlled trial. *Res Dev Disabil*. 2013 Nov;34(11):3629-38. doi: 10.1016/j.ridd.2013.07.037. Epub 2013 Sep 4. PMID: 24012586.
10. Ulrich DA, Lloyd MC, Tiernan CW, Looper JE, Angulo-Barroso RM. Effects of intensity of treadmill training on developmental outcomes and stepping in infants with Down syndrome: a randomized trial. *Phys Ther*. 2008 Jan;88(1):114-22. doi: 10.2522/ptj.20070139. Epub 2007 Oct 16. PMID: 17940103.
11. Ulrich DA, Ulrich BD, Angulo-Kinzler RM, Yun J. Treadmill Training of Infants With Down Syndrome: Evidence-Based Developmental Outcome. *Pediatrics* November 2001, 108 (5) e84; DOI: <https://doi.org/10.1542/peds.108.5.e84>
12. Wu J, Looper J, Ulrich DA, Angulo-Barroso RM. Effects of various treadmill interventions on the development of joint kinematics in infants with Down syndrome. *Phys Ther*. 2010 Sep;90(9):1265-76. doi: 10.2522/ptj.20090281. Epub 2010 Jul 22. PMID: 20651010.
13. Angulo-Barroso RM, Wu J, Ulrich DA. Long-term effect of different treadmill interventions on gait development in new walkers with Down syndrome. *Gait Posture*. 2008 Feb;27(2):231-8. doi: 10.1016/j.gaitpost.2007.03.014. Epub 2007 May 17. PMID: 17499993.

References

23. Ross CG, Shore S. The Effect of Gross Motor Therapy and Orthotic Intervention in Children With Hypotonia and Flexible Flatfeet. *JPO Journal of Prosthetics and Orthotics*. 23(3):149-154, JULY 2011. DOI: 10.1097/JPO.0b013e318227285e.
24. George DA, Elchert L. The influence of foot orthoses on the function of a child with developmental delay. *Pediatr Phys Ther*. 2007 Winter;19(4):332-6. doi: 10.1097/PEP.0b013e31815a110f. PMID: 18004202.
25. Martin K. Effects of supramalleolar orthoses on postural stability in children with Down syndrome. *Dev Med Child Neurol*. 2004 Jun;46(6):406-11. doi: 10.1017/s0012162204000659. PMID: 15174532.
26. Goracke E, Jacobs K, Pilney E, Shephard K. Goal-directed Leg Movements and Kicks in Infants with Spina Bifida. Doctor of Physical Therapy Research Papers: St. Catherine University. April 2016. Retrieved from Sophia, the St. Catherine University repository website: https://sophia.stkate.edu/dpt_papers/53.
27. DeRosier S, Martin J, Payne A, Swenson K, Wech E. The Effect of Conjugate Reinforcement on the Leg Movements of Infants with Spina Bifida. Doctor of Physical Therapy Research Papers: St. Catherine University. April 2015. Retrieved from Sophia, the St. Catherine University repository website: https://sophia.stkate.edu/dpt_papers/46.
28. SHARIF F, ARIF M, AHMAD A, Gilani SA. The Effect of Conjugate Reinforcement of Leg Movements in Infants with Spina Bifida. *Pakistan Ped J*. 2022. 200-204. https://www.researchgate.net/profile/Faiza-Sharif-3/publication/361800336_The_Effect_of_Conjugate_Reinforcement_of_Leg_Movements_in_Infants_with_Spina_Bifida/links/62c5d824f8c0fc18d3ec9950/The-Effect-of-Conjugate-Reinforcement-of-Leg-Movements-in-Infants-with-Spina-Bifida.pdf

References

High Tone Treadmill Studies

29. Cherng R-J, Liu C-F, Lau T-W, Hong R-B. Effect of treadmill training with body weight support on gait and gross motor function in children with spastic cerebral palsy. *American journal of physical medicine & rehabilitation*. 2007;86(7):548-555. doi:10.1097/PHM.0b013e31806dc30
30. Cho C, Hwang W, Hwang S, Chung Y. Treadmill Training with Virtual Reality Improves Gait, Balance, and Muscle Strength in Children with Cerebral Palsy. *Tohoku J Exp Med*. 2016 Mar;238(3):213-8. doi: 10.1620/tjem.238.213. PMID: 26947315.
31. El Shemy SA. Effect of Treadmill Training With Eyes Open and Closed on Knee Proprioception, Functional Balance and Mobility in Children With Spastic Diplegia. *Ann Rehabil Med*. 2018 Dec;42(6):854-862. doi: 10.5535/arm.2018.42.6.854. Epub 2018 Dec 28. PMID: 30613079; PMCID: PMC6325311.
32. Grecco LAC, Zanon N, Sampaio LMM, Oliveira CS. A comparison of treadmill training and overground walking in ambulant children with cerebral palsy: randomized controlled clinical trial. *Clinical rehabilitation*. 2013;27(8):686-696. doi:10.1177/026921551347672133.
33. Kim S-G, Ryu YU, Je HD, Jeong JH, Kim H-D. Backward walking treadmill therapy can improve walking ability in children with spastic cerebral palsy: a pilot study. *International journal of rehabilitation research Internationale Zeitschrift fur Rehabilitationsforschung Revue internationale de recherches de readaptation*. 2013;36(3):246-252. doi:10.1097/MRR.0b013e32835dd620
34. Kurz MJ, Stuber W, DeJong SL. Body weight supported treadmill training improves the regularity of the stepping kinematics in children with cerebral palsy. *Developmental neurorehabilitation*. 2011;14(2):87-93. doi:10.3109/17518423.2011.552459
35. Mattern-Baxter K, Bellamy S, Mansoor JK. Effects of intensive locomotor treadmill training on young children with cerebral palsy. *Pediatric physical therapy : the official publication of the Section on Pediatrics of the American Physical Therapy Association*. 2009;21(4):308-318. doi:10.1097/PEP.0b013e3181bf53d9
36. Mattern-Baxter K, McNeil S, Mansoor JK. Effects of home-based locomotor treadmill training on gross motor function in young children with cerebral palsy: a quasi-randomized controlled trial. *Archives of physical medicine and rehabilitation*. 2013;94(11):2061-2067. doi:10.1016/j.apmr.2013.05.012
37. Schindl MR, Forstner C, Kern H, Hesse S. Treadmill training with partial body weight support in nonambulatory patients with cerebral palsy. *Archives of physical medicine and rehabilitation*. 2000;81(3):301-306. doi:10.1016/s0003-9993(00)90075-3
38. Schroeder AS, Homburg M, Warken B, Auffermann H, Koerte I, Berweck S, Jahn K, Heinen F, Borggraefe I. Prospective controlled cohort study to evaluate changes of function, activity and participation in patients with bilateral spastic cerebral palsy after Robot-enhanced repetitive treadmill therapy. *Eur J Paediatr Neurol*. 2014 Jul;18(4):502-10. doi: 10.1016/j.ejpn.2014.04.012. Epub 2014 Apr 25. PMID: 24821475.

References

High Tone Strength Studies

39. Chen CL, Hong WH, Cheng HY, Liaw MY, Chung CY, Chen CY. Muscle strength enhancement following home-based virtual cycling training in ambulatory children with cerebral palsy. *Res Dev Disabil.* 2012;33(4):1087-1094. doi:10.1016/j.ridd.2012.01.017
40. Deghidi AN, Shoukery KE, Unnikrishnan R. Effect of Strengthening Exercises of Shoulder Muscles on Hand Functions in Spastic hemiplegic Cerebral Palsied Children. *Indian Journal of Physiotherapy & Occupational Therapy.* 2013;7(2):245-249. doi:10.5958/j.0973-5674.7.2.050
41. Engsberg JR, Ross SA, Collins DR. Increasing ankle strength to improve gait and function in children with cerebral palsy: a pilot study. *Pediatr Phys Ther.* 2006;18(4):266-275. doi:10.1097/01.pep.0000233023.33383.2b
42. Fowler EG, Knutson LM, Demuth SK, et al. Pediatric endurance and limb strengthening (PEDALS) for children with cerebral palsy using stationary cycling: a randomized controlled trial. *Phys Ther.* 2010;90(3):367-381. doi:10.2522/ptj.20080364
43. Lee JH, Sung IY, Yoo JY. Therapeutic effects of strengthening exercise on gait function of cerebral palsy. *Disabil Rehabil.* 2008;30(19):1439-1444. doi:10.1080/09638280701618943
44. Liao HF, Liu YC, Liu WY, Lin YT. Effectiveness of loaded sit-to-stand resistance exercise for children with mild spastic diplegia: a randomized clinical trial. *Arch Phys Med Rehabil.* 2007;88(1):25-31. doi:10.1016/j.apmr.2006.10.006
45. Morton JF, Brownlee M, McFadyen AK. The effects of progressive resistance training for children with cerebral palsy. *Clin Rehabil.* 2005;19(3):283-289. doi:10.1191/0269215505cr804oa
46. van Vulpen LF, de Groot S, Rameckers E, Becher JG, Dallmeijer AJ. Improved Walking Capacity and Muscle Strength After Functional Power-Training in Young Children With Cerebral Palsy. *Neurorehabil Neural Repair.* 2017;31(9):827-841. doi:10.1177/1545968317723750
47. van Vulpen LF, de Groot S, Rameckers EA, Becher JG, Dallmeijer AJ. Improved parent-reported mobility and achievement of individual goals on activity and participation level after functional power-training in young children with cerebral palsy: a double-baseline controlled trial. *Eur J Phys Rehabil Med.* 2018;54(5):730-737. doi:10.23736/S1973-9087.18.04921-3
48. Verschuren O, Ketelaar M, Gorter JW, Helders PJ, Uiterwaal CS, Takken T. Exercise training program in children and adolescents with cerebral palsy: a randomized controlled trial. *Arch Pediatr Adolesc Med.* 2007;161(11):1075-1081. doi:10.1001/archpedi.161.11.1075

References

High tone Intensive Studies

49. Bailes AF, Greve K, Burch CK, Reder R, Lin L, Huth MM. The effect of suit wear during an intensive therapy program in children with cerebral palsy. *Pediatr Phys Ther.* 2011;23(2):136-142. doi:10.1097/PEP.0b013e318218ef58
50. Brandão MB, Ferre C, Kuo HC, et al. Comparison of Structured Skill and Unstructured Practice During Intensive Bimanual Training in Children With Unilateral Spastic Cerebral Palsy. *Neurorehabil Neural Repair.* 2014;28(5):452-461. doi:10.1177/1545968313516871
51. Gordon AM, Schneider JA, Chinnan A, Charles JR. Efficacy of a hand-arm bimanual intensive therapy (HABIT) in children with hemiplegic cerebral palsy: a randomized control trial. *Dev Med Child Neurol.* 2007;49(11):830-838. doi:10.1111/j.1469-8749.2007.00830.
52. Mattern-Baxter K, Bellamy S, Mansoor JK. Effects of intensive locomotor treadmill training on young children with cerebral palsy. *Pediatr Phys Ther.* 2009;21(4):308-318. doi:10.1097/PEP.0b013e3181bf53d9
53. Mattern-Baxter K, Looper J, Zhou C, Bjornson K. Low-Intensity vs High-Intensity Home-Based Treadmill Training and Walking Attainment in Young Children With Spastic Diplegic Cerebral Palsy. *Arch Phys Med Rehabil.* 2020 Feb;101(2):204-212. doi: 10.1016/j.apmr.2019.09.015. Epub 2019 Nov 1. PMID: 31678223.
54. Phillips JP, Sullivan KJ, Burtner PA, Caprihan A, Provost B, Bernitsky-Beddingfield A. Ankle dorsiflexion fMRI in children with cerebral palsy undergoing intensive body-weight-supported treadmill training: a pilot study. *Dev Med Child Neurol.* 2007;49(1):39-44. doi:10.1017/s0012162207000102.x
55. Pottinger HL, Rahlin M, Voigt J, Walsh ME, Fregosi CM, Duncan BR. Feasibility of an intensive outpatient Perception-Action Approach intervention for children with cerebral palsy: a pilot study. *Physiother Theory Pract.* 2020;36(9):973-988. doi:10.1080/09593985.2018.1517847
56. Rahman MA, Zaman MM, Rahman MM, et al. Effects of Intensive versus Non-Intensive Physical Therapy on Children with Cerebral Palsy. *Mymensingh Med J.* 2016;25(3):421-424.
57. Richards CL, Malouin F, Dumas F, Marcoux S, Lepage C, Menier C. Early and intensive treadmill locomotor training for young children with cerebral palsy: a feasibility study. *Pediatric Physical Therapy.* 1997;9(4):158-165. doi:10.1097/00001577-199700940-00002
58. Sorsdahl AB, Moe-Nilssen R, Kaale HK, Rieber J, Strand LI. Change in basic motor abilities, quality of movement and everyday activities following intensive, goal-directed, activity-focused physiotherapy in a group setting for children with cerebral palsy. *BMC Pediatr.* 2010;10:26. Published 2010 Apr 27. doi:10.1186/1471-2431-10-26

References

High Tone Postural Studies

59. Batra M, Sharma VP, Malik GK, Batra V, Agarwal GG. Intervention Based on Dynamics of Postural Control in Children with Cerebral Palsy- An integral approach. *Indian Journal of Physiotherapy & Occupational Therapy*. 2011;5(3):68-73. Accessed January 17, 2022. <https://search-ebscohost-com.pearl.stkate.edu/login.aspx?direct=true&db=ccm&AN=104693758&site=ehost-live>
60. Elbasan B, Akaya KU, Akyuz M, Oskay D. Effects of neuromuscular electrical stimulation and Kinesio Taping applications in children with cerebral palsy on postural control and sitting balance. *J Back Musculoskelet Rehabil*. 2018 Feb 6;31(1):49-55. doi: 10.3233/BMR-169656. PMID: 28869434.
61. Harbourne RT, Willett S, Kyvelidou A, Deffeyes J, Stergiou N. A comparison of interventions for children with cerebral palsy to improve sitting postural control: a clinical trial. *Physical therapy*. 2010;90(12):1881-1898. doi:10.2522/ptj.2010132
62. Karabay İ, Doğan A, Ekiz T, Köseoğlu BF, Ersöz M. Training postural control and sitting in children with cerebral palsy: Kinesio taping vs. neuromuscular electrical stimulation. *Complement Ther Clin Pract*. 2016 Aug;24:67-72. doi: 10.1016/j.ctcp.2016.05.009. Epub 2016 May 12. PMID: 27502803.
63. Keles MN, Elbásan B, Apaydin U, Aribas Z, Bakirtas A, Kokturk N. Effects of inspiratory muscle training in children with cerebral palsy: a randomized controlled trial. *Braz J Phys Ther*. 2018;22(6):493-501. doi:10.1016/j.bjpt.2018.03.010
64. Ramya Y, Sri Kumari V, Madh K. Effect of Neuro Developmental Therapy Based Trunk Protocol on Gross Motor Development of Sitting Posture and Functional Reach Ability in Cerebralpalsychildren. *Indian Journal of Physiotherapy & Occupational Therapy*. 2013;7(4):167-171. doi:10.5958/j.0973-5674.7.4.142
65. Şimşek TT, Türkücüoğlu B, Çokal N, Üstünbaş G, Şimşek İE. The effects of Kinesio® taping on sitting posture, functional independence and gross motor function in children with cerebral palsy. *Disability and rehabilitation*. 2011;33(21-22):2058-2063. doi:10.3109/09638288.2011.560331
66. Tekin F, Kavlak E, Cavlak U, Altug F. Effectiveness of Neuro-Developmental Treatment (Bobath Concept) on postural control and balance in Cerebral Palsied children. *Journal of back and musculoskeletal rehabilitation*. 2018;31(2):397-403. doi:10.3233/BMR-170813
67. Velasco M, Raya R, Muzzioli L, et al. Evaluation of cervical posture improvement of children with cerebral palsy after physical therapy based on head movements and serious games. *BioMedical Engineering OnLine*. 2017;16:1-13. doi:10.1186/s12938-017-0364-5

References

High Tone Vibration Studies

68. Katusic A, Alimovic S, Mejaski-Bosnjak V. The effect of vibration therapy on spasticity and motor function in children with cerebral palsy: A randomized controlled trial. *NeuroRehabilitation*. 2013;32(1):1-8. doi:10.3233/NRE-130817
69. Ruck J, Chabot G, Rauch F. Vibration treatment in cerebral palsy: A randomized controlled pilot study. *J Musculoskelet Neuronal Interact*. 2010 Mar;10(1):77-83. PMID: 20190383.
70. Stark C, Herkenrath P, Hollmann H, et al. Early vibration assisted physiotherapy in toddlers with cerebral palsy - a randomized controlled pilot trial. *J Musculoskelet Neuronal Interact*. 2016;16(3):183-192. Published 2016 Sep 7.
71. Tekin F, Kavlak E. Short and Long-Term Effects of Whole-Body Vibration on Spasticity and Motor Performance in Children With Hemiparetic Cerebral Palsy. *Percept Mot Skills*. 2021;128(3):1107-1129. doi:10.1177/0031512521991095